论文标题

$ \!{} \ bmod k $彩色索引随机图

The $\!{}\bmod k$ chromatic index of random graphs

论文作者

Botler, Fábio, Colucci, Lucas, Kohayakawa, Yoshiharu

论文摘要

图$ g $的$ \!{} \ bmod k $色度指数是$ g $的最小颜色数量,以每种颜色边缘所跨越的子图的跨度为$ 1 \!\!\!\!\ pmod k $。最近,作者证明了每个图的$ \!{} \ bmod k $色度索引最多是$ 198K-101 $,改善了Scott [离散数学的结果。 175,1-3(1997),289-291]。在这里,我们研究$ \!{} \ bmod k $彩色索引随机图。 We prove that for every integer $k\geq2$, there is $C_k>0$ such that if $p\geq C_kn^{-1}\log{n}$ and $n(1-p) \rightarrow\infty$ as $n\to\infty$, then the following holds: if $k$ is odd, then the $\!{}\bmod k$ chromatic index $ g(n,p)$的零售价几乎肯定等于$ k $,而如果$ k $甚至是$ k $,则$ \!{} \ bmod k $ k $ cholomation $ g(2n,p)$(分别为$ g(2n+1,p)$ nasty上几乎是$ k $ k $ k $ k $ $ k $ $ k $(分别是$ k $ k $ k+1 $ 1 $)。

The $\!{}\bmod k$ chromatic index of a graph $G$ is the minimum number of colors needed to color the edges of $G$ in a way that the subgraph spanned by the edges of each color has all degrees congruent to $1\!\!\pmod k$. Recently, the authors proved that the $\!{}\bmod k$ chromatic index of every graph is at most $198k-101$, improving, for large $k$, a result of Scott [Discrete Math. 175, 1-3 (1997), 289-291]. Here we study the $\!{}\bmod k$ chromatic index of random graphs. We prove that for every integer $k\geq2$, there is $C_k>0$ such that if $p\geq C_kn^{-1}\log{n}$ and $n(1-p) \rightarrow\infty$ as $n\to\infty$, then the following holds: if $k$ is odd, then the $\!{}\bmod k$ chromatic index of $G(n,p)$ is asymptotically almost surely equal to $k$, while if $k$ is even, then the $\!{}\bmod k$ chromatic index of $G(2n,p)$ (respectively $G(2n+1,p)$) is asymptotically almost surely equal to $k$ (respectively $k+1$).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源