论文标题
单调和$ q $ formed的可交换随机过程的尾部代数
Tail algebras for monotone and $q$-deformed exchangeable stochastic processes
论文作者
论文摘要
我们计算可交换单调随机过程的尾部代数。这使我们能够证明De Finetti定理的类似于此类过程。此外,由于$ q $ -defermed $ c^*$ - 代数是$ | q | <1 $的唯一可交换状态,因此我们将注意力引起到其尾巴代数时,事实证明它遵守零一项法律。
We compute the tail algebras of exchangeable monotone stochastic processes. This allows us to prove the analogue of de Finetti's theorem for this type of processes. In addition, since the vacuum state on the $q$-deformed $C^*$-algebra is the only exchangeable state when $|q|<1$, we draw our attention to its tail algebra, which turns out to obey a zero-one law.