论文标题
蛋白质脂质指纹的连续体表示中的新兴模式
Emerging Patterns in the Continuum Representation of Protein-Lipid Fingerprints
论文作者
论文摘要
捕获复杂的生物学现象通常需要多尺度建模,在使用有限的昂贵和高保真模型的组件开发粗糙和廉价的模型的情况下。在这里,我们在癌症生物学的背景下考虑了这样的多尺度框架,并解决了评估使用分子动力学模型的一维统计数据开发的连续模型的描述能力的挑战。使用深度学习,我们开发了一个高度预测性的分类模型,该模型可以从连续模型中识别复杂和新兴行为。两次模拟证明了超过99.9%的精度,我们的方法证实了蛋白质特异性的“脂质指纹”的存在,即脂质的空间重排以响应感兴趣的蛋白质。通过此演示,我们的模型还提供了连续模型的外部验证,肯定了这种多尺度建模的价值,并可以通过对这些指纹的进一步分析来促进新的见解。
Capturing intricate biological phenomena often requires multiscale modeling where coarse and inexpensive models are developed using limited components of expensive and high-fidelity models. Here, we consider such a multiscale framework in the context of cancer biology and address the challenge of evaluating the descriptive capabilities of a continuum model developed using 1-dimensional statistics from a molecular dynamics model. Using deep learning, we develop a highly predictive classification model that identifies complex and emergent behavior from the continuum model. With over 99.9% accuracy demonstrated for two simulations, our approach confirms the existence of protein-specific "lipid fingerprints", i.e. spatial rearrangements of lipids in response to proteins of interest. Through this demonstration, our model also provides external validation of the continuum model, affirms the value of such multiscale modeling, and can foster new insights through further analysis of these fingerprints.