论文标题

Blant:网络拓扑的基本本地比对,第1部分:用明确的8节点绘制播种局部对齐

BLANT: Basic Local Alignment of Network Topology, Part 1: Seeding local alignments with unambiguous 8-node graphlets

论文作者

Wang, Patrick, Ye, Henry, Hayes, Wayne B

论文摘要

BLAST是生物信息学的标准工具,用于使用“种子和扩展”方法创建局部序列比对。在这里,我们介绍了一种类似的种子和扩展算法,该算法产生了本地网络对齐:Blant,用于网络拓扑的基本局部对齐。本文介绍了易碎的种子:给定输入图,单种子单独使用网络拓扑来创建一个有限的,高特异性的索引诱导k-graphlets(类似于Blasts的K-Mers)的k-node诱导子图。该索引的构建是这样,因此,如果两个图之间存在重要的共同网络拓扑,则它们的索引可能会重叠。然后,布兰特种子会查询两个网络的索引,以生成一个常见的k-graphlet列表,并在配对后形成一个种子对。我们的同伴论文(在其他地方提交)描述了Blant-Extend,该论文仅使用拓扑信息将这些种子“生长”到较大的本地对齐。

BLAST is a standard tool in bioinformatics for creating local sequence alignments using a "seed-and-extend" approach. Here we introduce an analogous seed-and-extend algorithm that produces local network alignments: BLANT, for Basic Local Alignment of Network Topology. This paper introduces BLANT-seed: given an input graph, BLANT-seed uses network topology alone to create a limited, high-specificity index of k-node induced subgraphs called k-graphlets (analogous to BLASTS's k-mers). The index is constructed so that, if significant common network topology exists between two graphs, their indexes are likely to overlap. BLANT-seed then queries the indexes of two networks to generate a list of common k-graphlets which, when paired, form a seed pair. Our companion paper (submitted elsewhere) describes BLANT-extend, which "grows" these seeds to larger local alignments, again using only topological information.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源