论文标题

在非效率验证试验中对两种二项式比例的分析

Analysis of two Binomial Proportions in Non-inferiority Confirmatory Trials

论文作者

Lakkis, Hassan, Lakkis, Andrew

论文摘要

在本文中,我们提出考虑非效率比较的确切似然评分(ELS)测试,并为两个独立的二项式比例之间的差异得出了基于测试的置信区间。该测试的p值是通过使用精确的二项式概率获得的,而滋扰参数被其受限的最大似然估计取代。计算出的I型误差显示,与流行的渐近方法相比,提出的ELS方法在80%或90%的统计能力中具有与流行的渐近方法相比,具有重要优势。对于比较治疗组的不平衡样本量,在一系列真实比例的范围内,渐近分数方法的I型误差显示出高于标称水平,但是ELS方法并未遭受此类问题的困扰。平均而言,ELS方法的真实I误差比经验比较中所有考虑的方法更接近标称水平。同样,在极少数情况下,ELS测试的I型错误超过了标称水平,但仅少量。此外,对于大多数确认试验,可以在不到30秒的计算机时间内获得使用ELS方法的P值和置信区间。理论论点和有吸引力的经验证据以及快速计算时间应该使ELS方法在统计实践中非常有吸引力。

In this paper, we propose considering an exact likelihood score (ELS) test for non-inferiority comparison and we derive its test-based confidence interval for the difference between two independent binomial proportions. The p-value for this test is obtained by using exact binomial probabilities with the nuisance parameter being replaced by its restricted maximum likelihood estimate. Calculated type I errors revealed that the proposed ELS method has important advantages for non-inferiority comparisons over popular asymptotic methods for adequately powered confirmatory clinical trials, at 80% or 90% statistical power. For unbalanced sample sizes of the compared treatment groups, the type I errors for the asymptotic score method were shown to be higher than the nominal level in a systematic pattern over a range of the true proportions, but the ELS method did not suffer from such a problem. On average, the true type I error of the ELS method was closer to the nominal level than all considered methods in the empirical comparisons. Also, in rare cases, the type I errors of the ELS test exceeded the nominal level, but only by a small amount. In addition, the p-value and confidence interval using the ELS method can be obtained in less than 30 seconds of computer time for most confirmatory trials. The theoretical arguments and the attractive empirical evidence, along with fast computation time, should make the ELS method very attractive for consideration in statistical practice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源