论文标题

多媒体中隐身志的信息理论界限

Information-Theoretic Bounds for Steganography in Multimedia

论文作者

Arsh, Hassan Y. El, Abdelaziz, Amr, Elliethy, Ahmed, Aly, Hussein A., Gulliver, T. Aaron

论文摘要

多媒体中的密集造影旨在将秘密数据嵌入一个无辜的多媒体覆盖物体中。这种嵌入会引入封面对象的某些失真,并产生相应的stego对象。嵌入失真是通过确定嵌入式秘密数据存在的检测概率的成本函数来衡量的。通常采用与最大嵌入率有关的成本函数来评估隐志系统。此外,多媒体来源的分布遵循吉布斯分布,这是一个限制分析的复杂统计模型。因此,以前的多媒体隐志方法要么假设放松分布,要么假定对最大嵌入率的命题,然后尝试证明其正确。相反,本文引入了一种分析方法,通过关于最大嵌入率与任何隐志检测器检测概率之间关系的约束优化问题来确定多媒体覆盖对象中的最大嵌入率。盖子和stego对象的分布之间的kl差异用作成本函数,因为它在最佳地对检测器的性能上限上界限。建立了Gibbs与相关的多数量学分布之间的等效性,以解决此优化问题。该解决方案根据Wrightomega函数提供了最大嵌入率的分析形式。此外,事实证明,最大嵌入速率与对隐肌的常用平方根定律(SRL)一致,但是此处介绍的解决方案更准确。最后,获得的理论结果经过实验验证。

Steganography in multimedia aims to embed secret data into an innocent looking multimedia cover object. This embedding introduces some distortion to the cover object and produces a corresponding stego object. The embedding distortion is measured by a cost function that determines the detection probability of the existence of the embedded secret data. A cost function related to the maximum embedding rate is typically employed to evaluate a steganographic system. In addition, the distribution of multimedia sources follows the Gibbs distribution which is a complex statistical model that restricts analysis. Thus, previous multimedia steganographic approaches either assume a relaxed distribution or presume a proposition on the maximum embedding rate and then try to prove it is correct. Conversely, this paper introduces an analytic approach to determining the maximum embedding rate in multimedia cover objects through a constrained optimization problem concerning the relationship between the maximum embedding rate and the probability of detection by any steganographic detector. The KL-divergence between the distributions for the cover and stego objects is used as the cost function as it upper bounds the performance of the optimal steganographic detector. An equivalence between the Gibbs and correlated-multivariate-quantized-Gaussian distributions is established to solve this optimization problem. The solution provides an analytic form for the maximum embedding rate in terms of the WrightOmega function. Moreover, it is proven that the maximum embedding rate is in agreement with the commonly used Square Root Law (SRL) for steganography, but the solution presented here is more accurate. Finally, the theoretical results obtained are verified experimentally.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源