论文标题

HEGRID:高效的多渠道射电射击数据网格框架在异质计算环境中

HEGrid: A High Efficient Multi-Channel Radio Astronomical Data Gridding Framework in Heterogeneous Computing Environments

论文作者

Wang, Hao, Yu, Ce, Xiao, Jian, Tang, Shanjiang, Long, Min, Zhu, Ming

论文摘要

充分利用现有和即将到来的科学工具(例如大型单次射电望远镜)的潜力的挑战是有效,有效地处理收集的大量数据。作为具有“摩尔邻域模式”的“准2D模板计算”,网格是用于射电天文学研究的数据减少管道中最密集的一步,使天文学家能够创建正确的天空图像,以进行进一步分析。但是,现有的网格框架可以只能在多核CPU体系结构上运行,或者不支持高电流,多通道数据网格。然后,它们的性能受到限制,并且有新兴的创新网格框架需要从大型单次射电望远镜(如五百米孔径球形望远镜(FAST))处理数据。为了应对这些挑战,我们通过克服上述局限性开发了高效的网格框架。具体而言,我们在异质计算环境中提出和构建网格管道管道,并实现高性能多通道处理的多上线并发。此外,我们提出了基于管道的合作式化,以减轻可能的低计算和I/O利用率的潜在负面绩效影响,包括基于组件共享的冗余消除,线程级数据再利用和重叠I/O和计算。我们的实验基于模拟数据集和实际快速观察数据集。结果表明,Hegrid的表现优于其他最先进的网格框架,高达5.5倍,并且具有强大的硬件便携性,包括AMD Radeon Instinct GPU和Nvidia GPU。

The challenge to fully exploit the potential of existing and upcoming scientific instruments like large single-dish radio telescopes is to process the collected massive data effectively and efficiently. As a "quasi 2D stencil computation" with the "Moore neighborhood pattern," gridding is the most computationally intensive step in data reduction pipeline for radio astronomy studies, enabling astronomers to create correct sky images for further analysis. However, the existing gridding frameworks can either only run on multi-core CPU architecture or do not support high-concurrency, multi-channel data gridding. Their performance is then limited, and there are emerging needs for innovative gridding frameworks to process data from large single-dish radio telescopes like the Five-hundred-meter Aperture Spherical Telescope (FAST). To address those challenges, we developed a High Efficient Gridding framework, HEGrid, by overcoming the above limitations. Specifically, we propose and construct the gridding pipeline in heterogeneous computing environments and achieve multi-pipeline concurrency for high performance multi-channel processing. Furthermore, we propose pipeline-based co-optimization to alleviate the potential negative performance impact of possible intra- and inter-pipeline low computation and I/O utilization, including component share-based redundancy elimination, thread-level data reuse and overlapping I/O and computation. Our experiments are based on both simulated datasets and actual FAST observational datasets. The results show that HEGrid outperforms other state-of-the-art gridding frameworks by up to 5.5x and has robust hardware portability, including AMD Radeon Instinct GPU and NVIDIA GPU.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源