论文标题
在进化过程中自然选择加速的几何速度极限
A geometric speed limit for acceleration by natural selection in evolutionary processes
论文作者
论文摘要
我们在人口动态中获得了新的速度限制,这是对进化速率的基本限制。通过将选择和突变对进化速率的贡献分解,我们获得了新的结合,以任意观测值的速度(称为选择结合),比传统的cramér-rao结合更紧。值得注意的是,如果选择的贡献比突变的贡献更为主导,则选择结合可能会更加紧密。这种紧密度可以以几何为特征在于可观察到的感兴趣与增长率之间的相关性。我们还在数字上说明了在进化过程的瞬态动力学中结合的选择的有效性,并讨论了如何通过实验测试我们的速度限制。
We derived a new speed limit in population dynamics, which is a fundamental limit on the evolutionary rate. By splitting the contributions of selection and mutation to the evolutionary rate, we obtained the new bound on the speed of arbitrary observables, named the selection bound, that can be tighter than the conventional Cramér--Rao bound. Remarkably, the selection bound can be much tighter if the contribution of selection is more dominant than that of mutation. This tightness can be geometrically characterized by the correlation between the observable of interest and the growth rate. We also numerically illustrate the effectiveness of the selection bound in the transient dynamics of evolutionary processes and discuss how to test our speed limit experimentally.