论文标题
自动量化基于物理的模拟
Automatic Quantization for Physics-Based Simulation
论文作者
论文摘要
事实证明,量化在高分辨率和大规模模拟中有效,这些模拟受益于位级记忆的保存。但是,确定符合精度和记忆效率要求的量化方案需要反复试验。在本文中,我们提出了一个新颖的框架,以允许用户通过简单地指定错误绑定或内存压缩率来获得量化方案。基于误差传播理论,我们的方法利用自动-DIFF来估计每个量化操作对总误差的贡献。我们将任务制定为受约束的优化问题,可以通过为线性化目标函数得出的分析公式有效地解决。我们的工作流程扩展了Taichi编译器并引入抖动以提高量化模拟的精度。我们通过几个基于物理的模拟示例来证明我们方法的一般性和效率,这些示例可实现高达2.5倍的记忆压缩,而不会在结果中明显降低视觉质量。我们的代码和数据可从https://github.com/hanke98/autoquantizer获得。
Quantization has proven effective in high-resolution and large-scale simulations, which benefit from bit-level memory saving. However, identifying a quantization scheme that meets the requirement of both precision and memory efficiency requires trial and error. In this paper, we propose a novel framework to allow users to obtain a quantization scheme by simply specifying either an error bound or a memory compression rate. Based on the error propagation theory, our method takes advantage of auto-diff to estimate the contributions of each quantization operation to the total error. We formulate the task as a constrained optimization problem, which can be efficiently solved with analytical formulas derived for the linearized objective function. Our workflow extends the Taichi compiler and introduces dithering to improve the precision of quantized simulations. We demonstrate the generality and efficiency of our method via several challenging examples of physics-based simulation, which achieves up to 2.5x memory compression without noticeable degradation of visual quality in the results. Our code and data are available at https://github.com/Hanke98/AutoQuantizer.