论文标题

部分可观测时空混沌系统的无模型预测

Experimental realization of a high precision tunable hexagonal optical lattice

论文作者

Liu, Jin-Yu, Luo, Guang-Quan, Wang, Xiao-Qiong, Hemmerich, Andreas, Xu, Zhi-Fang

论文摘要

六边形光学晶格提供了一个可调平台,用于研究固态材料中的异国轨道物理。在这里,我们提出了一种多功能的高精度方案,以实现六角光学晶格电位,该方案是通过重叠的两个独立的三角光学光轴向晶体而设计的,由激光束产生,其波长略有不同。这使我们能够通过调整两个三角光学旋转的相对位置和相对晶格深度来精确控制六角形晶格的详细结构。利用第二个Bloch带对小晶格变形的敏感依赖性,我们提出了一种以极高的精度优化光学晶格几何形状的策略。该方法也可以扩展到涉及两个以上sublattices的其他晶格配置。我们的工作提供了在搜索超电原子的新型轨道物理学时提供的实验要求,例如,在六角形光学晶格的平坦$ p $ band中。

Hexagonal optical lattices offer a tunable platform to study exotic orbital physics in solid state materials. Here, we present a versatile high-precision scheme to implement a hexagonal optical lattice potential, which is engineered by overlapping two independent triangular optical sublattices generated by laser beams with slightly different wavelengths around 1064 nm. This enables us to precisely control the detailed structure of the hexagonal lattice by adjusting the relative position and the relative lattice depth of the two triangular optical sublattices. Taking advantage of the sensitive dependence of the second Bloch band on small lattice deformations, we propose a strategy to optimize the optical lattice geometry with an extremely high precision. This method can also be extended to other lattice configurations involving more than two sublattices. Our work provides the experimental requirements in the search for novel orbital physics of ultracold atoms, for example, in the flat $p$-band of the hexagonal optical lattice.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源