论文标题
部分可观测时空混沌系统的无模型预测
Multi-peak solutions for singularly perturbed nonlinear Dirichlet problems involving critical growth
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We consider the following singularly perturbed elliptic problem \[ - {\varepsilon ^2}Δu + u = f(u){\text{ in }}Ω,{\text{ }}u > 0{\text{ in }}Ω,{\text{ }}u = 0{\text{ on }}\partial Ω, \] where $Ω$ is a domain in ${\mathbb{R}^N}(N \ge 3)$, not necessarily bounded, with boundary $\partial Ω\in {C^2}$ and the nonlinearity $f$ is of critical growth. In this paper, we construct a family of multi-peak solutions to the equation given above which concentrate around any prescribed finite sets of local maxima of the distance function from the boundary $\partial Ω$.