论文标题

部分可观测时空混沌系统的无模型预测

Whois? Deep Author Name Disambiguation using Bibliographic Data

论文作者

Boukhers, Zeyd, Bahubali, Nagaraj Asundi

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

As the number of authors is increasing exponentially over years, the number of authors sharing the same names is increasing proportionally. This makes it challenging to assign newly published papers to their adequate authors. Therefore, Author Name Ambiguity (ANA) is considered a critical open problem in digital libraries. This paper proposes an Author Name Disambiguation (AND) approach that links author names to their real-world entities by leveraging their co-authors and domain of research. To this end, we use a collection from the DBLP repository that contains more than 5 million bibliographic records authored by around 2.6 million co-authors. Our approach first groups authors who share the same last names and same first name initials. The author within each group is identified by capturing the relation with his/her co-authors and area of research, which is represented by the titles of the validated publications of the corresponding author. To this end, we train a neural network model that learns from the representations of the co-authors and titles. We validated the effectiveness of our approach by conducting extensive experiments on a large dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源