论文标题

保持距离:在机器学习监控中确定采样和距离阈值

Keep your Distance: Determining Sampling and Distance Thresholds in Machine Learning Monitoring

论文作者

Farhad, Al-Harith, Sorokos, Ioannis, Schmidt, Andreas, Akram, Mohammed Naveed, Aslansefat, Koorosh, Schneider, Daniel

论文摘要

机器学习〜(ML)近年来在不同的应用和域上提供了令人鼓舞的结果。但是,在许多情况下,需要确保可靠性甚至安全性等质量。为此,一个重要方面是确定是否在适合其应用程序范围的情况下部署了ML组件。对于其环境开放且可变的组件,例如在自动驾驶汽车中发现的组件,因此必须监视其操作情况以确定其与ML组件训练有素的范围的距离。如果认为该距离太大,则应用程序可以选择考虑ML组件结果不可靠并切换到替代方案,例如使用人类操作员输入。 SAFEML是一种基于培训和操作数据集的统计测试的距离测量,用于执行此类监视的模型无形方法。正确设置Safeml的限制包括缺乏确定给定应用程序的系统方法,需要多少个操作样本来产生可靠的距离信息以及确定适当的距离阈值。在这项工作中,我们通过提供实用方法来解决这些限制,并证明其在众所周知的交通标志识别问题中的用途,并在一个使用Carla开源汽车模拟器的示例中解决了这些局限性。

Machine Learning~(ML) has provided promising results in recent years across different applications and domains. However, in many cases, qualities such as reliability or even safety need to be ensured. To this end, one important aspect is to determine whether or not ML components are deployed in situations that are appropriate for their application scope. For components whose environments are open and variable, for instance those found in autonomous vehicles, it is therefore important to monitor their operational situation to determine its distance from the ML components' trained scope. If that distance is deemed too great, the application may choose to consider the ML component outcome unreliable and switch to alternatives, e.g. using human operator input instead. SafeML is a model-agnostic approach for performing such monitoring, using distance measures based on statistical testing of the training and operational datasets. Limitations in setting SafeML up properly include the lack of a systematic approach for determining, for a given application, how many operational samples are needed to yield reliable distance information as well as to determine an appropriate distance threshold. In this work, we address these limitations by providing a practical approach and demonstrate its use in a well known traffic sign recognition problem, and on an example using the CARLA open-source automotive simulator.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源