论文标题

协作不确定性益处多代理多模式轨迹预测

Collaborative Uncertainty Benefits Multi-Agent Multi-Modal Trajectory Forecasting

论文作者

Tang, Bohan, Zhong, Yiqi, Xu, Chenxin, Wu, Wei-Tao, Neumann, Ulrich, Wang, Yanfeng, Zhang, Ya, Chen, Siheng

论文摘要

在多模式多代理轨迹预测中,尚未完全解决两个主要挑战:1)如何测量相互作用模块引起的不确定性,从而导致多个试剂的预测轨迹之间引起相关性; 2)如何对多个预测进行排名并选择最佳预测轨迹。为了应对这些挑战,这项工作首先提出了一个新颖的概念,即协作不确定性(CU),该概念模拟了互动模块引起的不确定性。然后,我们使用原始的置换量度不确定性估计器来构建一般的CU感知回归框架,以完成回归和不确定性估计任务。此外,我们将提出的框架应用于当前的SOTA多代理多模式预测系统作为插件模块,该模块使SOTA系统可以估计多代理多模式轨迹预测任务的不确定性; 2)对多个预测进行排名,并根据估计的不确定性选择最佳预测。我们对合成数据集和两个公共大规模多代理轨迹预测基准进行了广泛的实验。实验表明:1)在合成数据集上,Cu-Aware回归框架允许该模型适当地近似地面真相拉普拉斯分布; 2)在多代理轨迹预测的基准上,Cu-Aware Repression框架稳步帮助SOTA系统改善了其性能。特别是,提出的框架可以帮助Vectornet在Nuscenes数据集中所选最佳预测的最终位移误差方面提高262 cm; 3)对于多机构多模式轨迹预测系统,预测不确定性与将来的随机性呈正相关。 4)估计的CU值与代理之间的交互信息高度相关。

In multi-modal multi-agent trajectory forecasting, two major challenges have not been fully tackled: 1) how to measure the uncertainty brought by the interaction module that causes correlations among the predicted trajectories of multiple agents; 2) how to rank the multiple predictions and select the optimal predicted trajectory. In order to handle these challenges, this work first proposes a novel concept, collaborative uncertainty (CU), which models the uncertainty resulting from interaction modules. Then we build a general CU-aware regression framework with an original permutation-equivariant uncertainty estimator to do both tasks of regression and uncertainty estimation. Further, we apply the proposed framework to current SOTA multi-agent multi-modal forecasting systems as a plugin module, which enables the SOTA systems to 1) estimate the uncertainty in the multi-agent multi-modal trajectory forecasting task; 2) rank the multiple predictions and select the optimal one based on the estimated uncertainty. We conduct extensive experiments on a synthetic dataset and two public large-scale multi-agent trajectory forecasting benchmarks. Experiments show that: 1) on the synthetic dataset, the CU-aware regression framework allows the model to appropriately approximate the ground-truth Laplace distribution; 2) on the multi-agent trajectory forecasting benchmarks, the CU-aware regression framework steadily helps SOTA systems improve their performances. Specially, the proposed framework helps VectorNet improve by 262 cm regarding the Final Displacement Error of the chosen optimal prediction on the nuScenes dataset; 3) for multi-agent multi-modal trajectory forecasting systems, prediction uncertainty is positively correlated with future stochasticity; and 4) the estimated CU values are highly related to the interactive information among agents.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源