论文标题

宇宙图:使用目录从大规模结构中提取最佳信息

The Cosmic Graph: Optimal Information Extraction from Large-Scale Structure using Catalogues

论文作者

Makinen, T. Lucas, Charnock, Tom, Lemos, Pablo, Porqueres, Natalia, Heavens, Alan, Wandelt, Benjamin D.

论文摘要

我们提出了一种隐性的似然方法,可以通过分散目录数据来量化宇宙学信息,并以图为图。为此,我们使用模拟暗物质光环目录探索宇宙参数约束。我们采用最大化神经网络(IMNN)的信息来量化Fisher信息提取,这是图表的函数。 We a) demonstrate the high sensitivity of modular graph structure to the underlying cosmology in the noise-free limit, b) show that graph neural network summaries automatically combine mass and clustering information through comparisons to traditional statistics, c) demonstrate that networks can still extract information when catalogues are subject to noisy survey cuts, and d) illustrate how nonlinear IMNN summaries can be used as asymptotically optimal compressed statistics for基于贝叶斯模拟的推断。我们在两点相关函数上将接头$ω_m,σ_8$参数约束减少42倍,并证明网络自动结合质量和聚类信息。这项工作利用了JAX中的图形数据的新IMNN实现,该实现可以利用数值或自动差异性。我们还表明,IMNNS成功地压缩了拟合网络的基准模型的模拟,这表明基于目录模拟的分析中N点统计的有希望的替代方法。

We present an implicit likelihood approach to quantifying cosmological information over discrete catalogue data, assembled as graphs. To do so, we explore cosmological parameter constraints using mock dark matter halo catalogues. We employ Information Maximising Neural Networks (IMNNs) to quantify Fisher information extraction as a function of graph representation. We a) demonstrate the high sensitivity of modular graph structure to the underlying cosmology in the noise-free limit, b) show that graph neural network summaries automatically combine mass and clustering information through comparisons to traditional statistics, c) demonstrate that networks can still extract information when catalogues are subject to noisy survey cuts, and d) illustrate how nonlinear IMNN summaries can be used as asymptotically optimal compressed statistics for Bayesian simulation-based inference. We reduce the area of joint $Ω_m, σ_8$ parameter constraints with small ($\sim$100 object) halo catalogues by a factor of 42 over the two-point correlation function, and demonstrate that the networks automatically combine mass and clustering information. This work utilises a new IMNN implementation over graph data in Jax, which can take advantage of either numerical or auto-differentiability. We also show that graph IMNNs successfully compress simulations away from the fiducial model at which the network is fitted, indicating a promising alternative to n-point statistics in catalogue simulation-based analyses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源