论文标题

不确定性了解在线合并计划与学习的驾驶员行为

Uncertainty-Aware Online Merge Planning with Learned Driver Behavior

论文作者

Kruse, Liam A., Yel, Esen, Senanayake, Ransalu, Kochenderfer, Mykel J.

论文摘要

安全可靠的自治解决方案是下一代智能运输系统的关键组成部分。这种系统中的自动驾驶汽车必须实时考虑复杂而动态的驾驶场景,并预测附近驾驶员的行为。人类驾驶行为非常细微,对个别交通参与者具有特殊性。例如,在合并车辆的情况下,驾驶员可能会显示合作或非合作行为。这些行为必须估算并纳入安全有效驾驶的计划过程中。在这项工作中,我们提出了一个框架,用于估算高速公路上驾驶员的合作水平,并计划将操纵与驱动程序的潜在行为合并。潜在参数估计问题使用粒子过滤器解决,以近似合作级别的概率分布。包括潜在状态估算的部分可观察到的马尔可夫决策过程(POMDP)在线解决,以提取合并车辆的政策。我们在高保真的汽车模拟器中评估我们的方法,以对潜在状态不可知或依赖于$ \ textit {a先验{先验} $假设。

Safe and reliable autonomy solutions are a critical component of next-generation intelligent transportation systems. Autonomous vehicles in such systems must reason about complex and dynamic driving scenes in real time and anticipate the behavior of nearby drivers. Human driving behavior is highly nuanced and specific to individual traffic participants. For example, drivers might display cooperative or non-cooperative behaviors in the presence of merging vehicles. These behaviors must be estimated and incorporated in the planning process for safe and efficient driving. In this work, we present a framework for estimating the cooperation level of drivers on a freeway and plan merging maneuvers with the drivers' latent behaviors explicitly modeled. The latent parameter estimation problem is solved using a particle filter to approximate the probability distribution over the cooperation level. A partially observable Markov decision process (POMDP) that includes the latent state estimate is solved online to extract a policy for a merging vehicle. We evaluate our method in a high-fidelity automotive simulator against methods that are agnostic to latent states or rely on $\textit{a priori}$ assumptions about actor behavior.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源