论文标题
通过贝叶斯实验设计进行因果决策的有效实际测试,以进行上下文优化
Efficient Real-world Testing of Causal Decision Making via Bayesian Experimental Design for Contextual Optimisation
论文作者
论文摘要
使用因果机器学习模型做出的决策的现实测试是其成功应用的重要先决条件。我们专注于评估和改善上下文治疗作业决策:这些是适用于例如客户,每个都有自己的上下文信息,目的是最大程度地提高奖励。在本文中,我们介绍了一个模型不足的框架,用于收集数据,以通过贝叶斯实验设计评估和改善上下文决策。具体而言,我们的方法用于对过去治疗作业的遗憾的数据有效评估。与A/B测试之类的方法不同,我们的方法避免了分配已知是高度优势的治疗方法,同时进行了一些探索以收集相关信息。我们通过引入基于信息的设计目标来实现这一目标,我们优化了端到端。我们的方法适用于离散和连续治疗。在几项仿真研究中,将我们的信息理论方法与基准者进行比较表明了我们提出的方法的出色表现。
The real-world testing of decisions made using causal machine learning models is an essential prerequisite for their successful application. We focus on evaluating and improving contextual treatment assignment decisions: these are personalised treatments applied to e.g. customers, each with their own contextual information, with the aim of maximising a reward. In this paper we introduce a model-agnostic framework for gathering data to evaluate and improve contextual decision making through Bayesian Experimental Design. Specifically, our method is used for the data-efficient evaluation of the regret of past treatment assignments. Unlike approaches such as A/B testing, our method avoids assigning treatments that are known to be highly sub-optimal, whilst engaging in some exploration to gather pertinent information. We achieve this by introducing an information-based design objective, which we optimise end-to-end. Our method applies to discrete and continuous treatments. Comparing our information-theoretic approach to baselines in several simulation studies demonstrates the superior performance of our proposed approach.