论文标题
相对双曲线的明显长度谱图
Marked length spectrum rigidity for relatively hyperbolic groups
论文作者
论文摘要
我们考虑了标记长度光谱刚度的粗略版本:给定一个具有两个左不变度指标的组,如果两个度量标准的长度光谱(翻译长度函数)相同,则两个度量均匀接近。我们证明了相对双曲基团的刚性定理。这概括了藤原的结果。
We consider a coarse version of the marked length spectrum rigidity: given a group with two left invariant metrics, if the marked length spectrum (the translation length function) under the two metrics are the same, then the two metrics are uniformly close. We prove the rigidity theorem for relatively hyperbolic groups. This generalizes a result of Fujiwara.