论文标题

通过学习而无需忘记来改善领域的概括:在零售结帐中应用

Improving Domain Generalization by Learning without Forgetting: Application in Retail Checkout

论文作者

Nguyen, Thuy C., Phan, Nam LH., Nguyen, Son T.

论文摘要

由于相似的外观产品及其各种姿势,在人类水平的零售商店中设计自动结帐系统是具有挑战性的。本文通过提出具有两阶段管道的方法来解决问题。第一阶段检测到类不足的项目,第二阶段专门用于对产品类别进行分类。我们还会在视频帧中跟踪对象,以避免重复计数。一个主要的挑战是域间隙,因为模型经过合成数据的训练,但对真实图像进行了测试。为了减少误差差距,我们为第一阶段检测器采用域概括方法。此外,模型集合用于增强第二阶段分类器的鲁棒性。该方法在AI City Challenge 2022 -Track 4上进行了评估,并在测试A集合中获得了F1评分$ 40 \%$。代码在链接上发布https://github.com/cybercore-co-ltd/aicity22-track4。

Designing an automatic checkout system for retail stores at the human level accuracy is challenging due to similar appearance products and their various poses. This paper addresses the problem by proposing a method with a two-stage pipeline. The first stage detects class-agnostic items, and the second one is dedicated to classify product categories. We also track the objects across video frames to avoid duplicated counting. One major challenge is the domain gap because the models are trained on synthetic data but tested on the real images. To reduce the error gap, we adopt domain generalization methods for the first-stage detector. In addition, model ensemble is used to enhance the robustness of the 2nd-stage classifier. The method is evaluated on the AI City challenge 2022 -- Track 4 and gets the F1 score $40\%$ on the test A set. Code is released at the link https://github.com/cybercore-co-ltd/aicity22-track4.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源