论文标题
Moebius-Kantor复合物中的根分布
Root distributions in Moebius-Kantor complexes
论文作者
论文摘要
我们研究了具有Moebius-kantor链接的非阳性弯曲的2个复合物中等级2的根的分布。对于如此复杂的每个面孔,在面部附近,等级2的根数的均等是由根分布确定的明确定义的几何不变式。我们研究根部分布与奇偶分布之间的关系。我们证明,在Moebius-Kantor Complexs中不允许的公寓中存在奇偶校验分布。这与可以实现每个根分布的事实形成鲜明对比。我们对平面平面上的均衡分布(即,每个脸部甚至每个面)关联的根分布进行分类。我们证明,同构的存在是独特的,即使是简单地连接的Moebius(Kantor Complex),即Pauli Complex。
We study the distribution of roots of rank 2 in nonpositively curved 2-complexes with Moebius--Kantor links. For every face in such a complex, the parity of the number of roots of rank 2 in a neighbourhood of the face is a well-defined geometric invariant determined by the root distribution. We study the relation between the root distribution and the parity distribution. We prove that there exist parity distributions in flats which are disallowed in Moebius--Kantor complexes. This contrasts with the fact that every root distribution can be realized. We classify the root distributions associated with an even parity distribution (i.e., such that every face is even) on a flat plane. We prove that there exists up to isomorphism a unique even simply connected Moebius--Kantor complex -- namely, the Pauli complex.