论文标题
严格的局部状态
Strictly Localized States on the Socolar Dodecagonal Lattice
论文作者
论文摘要
Socolar Dodecagonal晶格是与知名的Ammann-Beenker和Penrose Lattices密切相关的准晶体。剪切和项目方法从六维简单的立方晶格产生了这十二倍旋转的对称晶格。我们考虑此晶格上的顶点紧密结合模型,并使用垂直空间中顶点的接受域来计算严格局部状态的频率。我们从数值上发现这些状态跨越$ f _ {\ mathrm {num}} \ simeq 7.61 $ \%的希尔伯特空间。我们提供18种独立的局部状态类型并计算其频率。这些本地化状态类型提供$ f _ {\ mathrm {ls}} = \ frac {10919-6304 \ sqrt {3}} {2} \ simeq 0.075854 $,占零$ 99 \%$ 99 \%$ 99 \%$ 99 \%。数值证据表明,较大的局部状态类型具有较小的频率,类似于Ammann-Beenker晶格。另一方面,我们发现与托管本地状态的本地连接禁止的站点。 Ammann-Beenker晶格不存在禁止的地点,但在Penrose晶格中很常见。我们发现$ f _ {\ mathrm {forbid}} \ simeq 0.038955 $的下限用于禁止站点的频率。最后,我们发现的所有本地化状态类型都可以选择在其支持上具有恒定密度和交替的标志,这是与Ammann-Beenker晶格共享的另一个功能。
Socolar dodecagonal lattice is a quasicrystal closely related to the better-known Ammann-Beenker and Penrose lattices. The cut and project method generates this twelve-fold rotationally symmetric lattice from the six-dimensional simple cubic lattice. We consider the vertex tight-binding model on this lattice and use the acceptance domains of the vertices in perpendicular space to count the frequency of strictly localized states. We numerically find that these states span $f_{\mathrm{Num}}\simeq 7.61$ \% of the Hilbert space. We give 18 independent localized state types and calculate their frequencies. These localized state types provide a lower bound of $f_{\mathrm{LS}} =\frac{10919-6304\sqrt{3}}{2} \simeq 0.075854$, accounting for more than $99 \%$ of the zero-energy manifold. Numerical evidence points to larger localized state types with smaller frequencies, similar to the Ammann-Beenker lattice. On the other hand, we find sites forbidden by local connectivity to host localized states. Forbidden sites do not exist for the Ammann-Beenker lattice but are common in the Penrose lattice. We find a lower bound of $f_{\mathrm{Forbid}}\simeq 0.038955$ for the frequency of forbidden sites. Finally, all the localized state types we find can be chosen to have constant density and alternating signs over their support, another feature shared with the Ammann-Beenker lattice.