论文标题

通过表演分布强大的优化,少数群体的长期公平性

Long Term Fairness for Minority Groups via Performative Distributionally Robust Optimization

论文作者

Peet-Pare, Liam, Hegde, Nidhi, Fyshe, Alona

论文摘要

机器学习中的公平研究人员(ML)围绕几个公平标准结合,这些标准为ML模型公平提供了正式的定义。但是,这些标准有一些严重的局限性。我们确定了这些正式公平标准的四个主要缺点,并旨在通过扩展性能预测以包含分配稳健的目标来帮助解决这些问题。

Fairness researchers in machine learning (ML) have coalesced around several fairness criteria which provide formal definitions of what it means for an ML model to be fair. However, these criteria have some serious limitations. We identify four key shortcomings of these formal fairness criteria, and aim to help to address them by extending performative prediction to include a distributionally robust objective.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源