论文标题
围绕矩形圆柱体的流量中的湍流结构
Structure of turbulence in the flow around a rectangular cylinder
论文作者
论文摘要
研究了经过矩形圆柱体的分离和重新连接的湍流,以描述小规模和大尺度如何促进速度波动的可持续机理。这项工作基于各向异性概括的kolmogorov方程(AGKE),在尺度和物理空间中的二阶结构函数张量的精确预算方程。规模空间通量表明,流动中的正向和反向能量同时发生在流动中,具有有趣的建模含义。 在纵向缸侧,前沿剪切层的开尔文 - 螺旋不稳定会产生较大的跨度卷,从而将其延伸到类似发夹的涡流中,并最终分解成较小的流涡流。速度波动的独立来源在不同的尺度上作用。流动动力学以压力应变为主导:重新触及区域的气缸表面上的流动撞击会产生跨度速度的波动,非常靠近墙壁,在较大的壁距离下,将它们重新定位到供应流循环的涡旋。 在近唤醒中,大型vonKàrmàn样涡流从后端脱落,并与较小的湍流结构共存,每个结构都有自己的独立生产机构。在后端,壁的突然消失改变了湍流的结构:流向涡流逐渐消失,而靠近壁的跨度结构突然通过压力应变变成垂直波动。
The separating and reattaching turbulent flow past a rectangular cylinder is studied to describe how small and large scales contribute to the sustaining mechanism of the velocity fluctuations. The work is based on the Anisotropic Generalised Kolmogorov Equations (AGKE), exact budget equations for the second-order structure function tensor in the space of scales and in the physical space. Scale-space energy fluxes show that forward and reverse energy transfers simultaneously occur in the flow, with interesting modelling implications. Over the longitudinal cylinder side, the Kelvin-Helmholtz instability of the leading-edge shear layer generates large spanwise rolls, which get stretched into hairpin-like vortices and eventually break down into smaller streamwise vortices. Independent sources of velocity fluctuations act at different scales. The flow dynamics is dominated by pressure-strain: the flow impingement on the cylinder surface in the reattachment zone produces spanwise velocity fluctuations very close to the wall and, at larger wall distances, reorients them to feed streamwise-aligned vortices. In the near wake, large von Kàrmàn-like vortices are shed from the trailing edge and coexist with smaller turbulent structures, each with its own independent production mechanism. At the trailing edge, the sudden disappearance of the wall changes the structure of turbulence: streamwise vortices progressively vanish, while spanwise structures close to the wall are suddenly turned into vertical fluctuations by the pressure strain.