论文标题
在线性时间逻辑中确定普通语言和本体学介导的查询
Deciding FO-rewritability of regular languages and ontology-mediated queries in Linear Temporal Logic
论文作者
论文摘要
我们担心的是确定在线性逻辑LTL(z,z,<)上确定本体介导的查询(OMQ)的数据复杂性的问题,并确定它是否可以重写(<) - 查询,可能带有一些额外的谓词。首先,我们观察到,按照普通语言的电路复杂性和可疑性,OMQ在AC^0,ACC^0和NC^1中回答与FO(<,equiv) - 使用Unary predicates x \ equiv 0(mod n),fo(mod n),fo(<,mod)-mod judrieltionalition flitiase for fo fo fo(<,equiv) - 可启动性使用。我们证明,与识别常规语言的fo(<)确定性的已知pspace完整性相似,决定fo(<,\ equiv) - 和fo(<,mod)-ddedebility也是\ pspace-complete(除非acc^0 = nc^1)。然后,我们使用此结果表明,确定fo(<),fo(<,\ equiv) - 和fo(<,mod) - ltl omqs的可剥削性是expspace compterety的,并且这些问题对OMQ对OMQ来说是pspace-compterety compterty omq compterety omq compterty omq compterty omq compterety contery of the omq compterety consote and a the otomic Query us a Atomic Query,以及在foery中的积极质量(以及fo)(<)<) - <) - <) - <) fo(<,\ equiv) - 剥夺。此外,我们考虑使用二进制子句本体论的OMQ的FO(<) - 确定OMQ类是pspace-,pspace-,pi_2^p-和conp-complete。
Our concern is the problem of determining the data complexity of answering an ontology-mediated query (OMQ) formulated in linear temporal logic LTL over (Z,<) and deciding whether it is rewritable to an FO(<)-query, possibly with some extra predicates. First, we observe that, in line with the circuit complexity and FO-definability of regular languages, OMQ answering in AC^0, ACC^0 and NC^1 coincides with FO(<,\equiv)-rewritability using unary predicates x \equiv 0 (mod n), FO(<,MOD)-rewritability, and FO(RPR)-rewritability using relational primitive recursion, respectively. We prove that, similarly to known PSPACE-completeness of recognising FO(<)-definability of regular languages, deciding FO(<,\equiv)- and FO(<,MOD)-definability is also \PSPACE-complete (unless ACC^0 = NC^1). We then use this result to show that deciding FO(<)-, FO(<,\equiv)- and FO(<,MOD)-rewritability of LTL OMQs is EXPSPACE-complete, and that these problems become PSPACE-complete for OMQs with a linear Horn ontology and an atomic query, and also a positive query in the cases of FO(<)- and FO(<,\equiv)-rewritability. Further, we consider FO(<)-rewritability of OMQs with a binary-clause ontology and identify OMQ classes, for which deciding it is PSPACE-, Pi_2^p- and coNP-complete.