论文标题
修补的图案和混乱界面的出现在非局限性耦合兴奋性系统阵列中
Patched patterns and emergence of chaotic interfaces in arrays of nonlocally coupled excitable systems
论文作者
论文摘要
我们在一系列具有吸引力和排斥性相互作用的非耦合兴奋单元中披露了一种称为修补模式的新模式,称为修补模式。自组织过程涉及形成两种类型的斑块,多数和少数族裔,其特征是平均尖峰频率均匀。修补的模式可能是时间周期性的,准碘的或混乱的,因此混乱的模式可以进一步发展由单位组成的界面,该单元在多数和少数斑块之间的平均频率。使用混乱和分叉理论,我们证明了混乱通常是通过圆环破裂出现的,并确定了引起混乱界面的次要分叉。结果表明,混乱的修补图案的最大Lyapunov指数不会衰减,而是收敛到具有系统大小的有限值。带有较小波数的修补图案可能表现出混沌界面的扩散运动,类似于嵌合体的不连贯部分。
We disclose a new class of patterns, called patched patterns, in arrays of non-locally coupled excitable units with attractive and repulsive interactions. Self-organization process involves formation of two types of patches, majority and minority ones, characterized by uniform average spiking frequencies. Patched patterns may be temporally periodic, quasiperiodic or chaotic, whereby chaotic patterns may further develop interfaces comprised of units with average frequencies in between those of majority and minority patches. Using chaos and bifurcation theory, we demonstrate that chaos typically emerges via a torus breakup and identify the secondary bifurcation that gives rise to chaotic interfaces. It is shown that the maximal Lyapunov exponent of chaotic patched patterns does not decay, but rather converges to a finite value with system size. Patched patterns with a smaller wavenumber may exhibit diffusive motion of chaotic interfaces, similar to that of the incoherent part of chimeras.