论文标题
通过Frobenius Powers的通用联系的奇异性
Singularities of generic linkage via Frobenius powers
论文作者
论文摘要
让$ i $是$ \ mathbb {c} $的戒指多项式$ r $的等准理想,让$ j $是其通用链接。我们证明,通过普遍的理想frobenius力量,$ i_p $ $ i_p $和$ j_p $之间差异的统一界限。这提供了证据,表明等准理想$ i $的F-pure阈值少于其通用链接的阈值。作为推论,我们通过NIU恢复了对通用链接的日志规范阈值的结果。
Let $I$ be an equidimensional ideal of a ring polynomial $R$ over $\mathbb{C}$ and let $J$ be its generic linkage. We prove that there is a uniform bound of the difference between the F-pure thresholds of $I_p$ and $J_p$ via the generalized Frobenius powers of ideals. This provides evidence that the F-pure threshold of an equidimensional ideal $I$ is less than that of its generic linkage. As a corollary we recover a result on log canonical thresholds of generic linkage by Niu.