论文标题

低资源Quechua ASR改进的数据增强

Data Augmentation for Low-Resource Quechua ASR Improvement

论文作者

Zevallos, Rodolfo, Bel, Nuria, Cámbara, Guillermo, Farrús, Mireia, Luque, Jordi

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Automatic Speech Recognition (ASR) is a key element in new services that helps users to interact with an automated system. Deep learning methods have made it possible to deploy systems with word error rates below 5% for ASR of English. However, the use of these methods is only available for languages with hundreds or thousands of hours of audio and their corresponding transcriptions. For the so-called low-resource languages to speed up the availability of resources that can improve the performance of their ASR systems, methods of creating new resources on the basis of existing ones are being investigated. In this paper we describe our data augmentation approach to improve the results of ASR models for low-resource and agglutinative languages. We carry out experiments developing an ASR for Quechua using the wav2letter++ model. We reduced WER by 8.73% through our approach to the base model. The resulting ASR model obtained 22.75% WER and was trained with 99 hours of original resources and 99 hours of synthetic data obtained with a combination of text augmentation and synthetic speech generati

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源