论文标题
CSI自适应量化和反馈的学习表示
Learning Representations for CSI Adaptive Quantization and Feedback
论文作者
论文摘要
在这项工作中,我们提出了一种有效的方法,用于通道状态信息(CSI)自适应量化和频中的双工(FDD)系统中的反馈。现有作品主要集中于实施自动编码器(AE)神经网络(NNS)进行CSI压缩,并考虑直接的量化方法,例如统一量化,通常不是最佳的。通过这种策略,很难达到较低的重建误差,尤其是当用于潜在空间量化的可用位数很小时。为了解决此问题,我们建议两种不同的方法:一种基于培训后量化的方法,以及第二种方法,其中在AE培训期间找到了代码手册。与标准量化技术相比,这两种策略都具有更好的重建精度。
In this work, we propose an efficient method for channel state information (CSI) adaptive quantization and feedback in frequency division duplexing (FDD) systems. Existing works mainly focus on the implementation of autoencoder (AE) neural networks (NNs) for CSI compression, and consider straightforward quantization methods, e.g., uniform quantization, which are generally not optimal. With this strategy, it is hard to achieve a low reconstruction error, especially, when the available number of bits reserved for the latent space quantization is small. To address this issue, we recommend two different methods: one based on a post training quantization and the second one in which the codebook is found during the training of the AE. Both strategies achieve better reconstruction accuracy compared to standard quantization techniques.