论文标题
树结构 - 通过层次聚集来了解几个图像分类
Tree Structure-Aware Few-Shot Image Classification via Hierarchical Aggregation
论文作者
论文摘要
在本文中,我们主要关注如何通过借口任务(例如,旋转或颜色置换等)学习其他特征表示形式的问题。借口任务产生的这种附加知识可以进一步提高少量学习(FSL)的性能,因为它与人类通知的监督(即FSL任务的类标签)有所不同。为了解决此问题,我们提出了一个插入式层次树结构感知(HTS)方法,该方法不仅了解FSL和借口任务的关系,而且更重要的是,可以自适应地选择和汇总由借口任务生成的特征表示,以最大程度地提高FSL任务的性能。引入了层次树构造组件和封闭式选择汇总组件来构建树结构并找到更丰富的可转移知识,这些知识可以迅速适应具有一些标记的图像的新颖类。广泛的实验表明,我们的HTS可以显着增强多种几次方法,以在四个基准数据集上实现新的最新性能。该代码可在以下网址获得:https://github.com/remimz/hts-eccv22。
In this paper, we mainly focus on the problem of how to learn additional feature representations for few-shot image classification through pretext tasks (e.g., rotation or color permutation and so on). This additional knowledge generated by pretext tasks can further improve the performance of few-shot learning (FSL) as it differs from human-annotated supervision (i.e., class labels of FSL tasks). To solve this problem, we present a plug-in Hierarchical Tree Structure-aware (HTS) method, which not only learns the relationship of FSL and pretext tasks, but more importantly, can adaptively select and aggregate feature representations generated by pretext tasks to maximize the performance of FSL tasks. A hierarchical tree constructing component and a gated selection aggregating component is introduced to construct the tree structure and find richer transferable knowledge that can rapidly adapt to novel classes with a few labeled images. Extensive experiments show that our HTS can significantly enhance multiple few-shot methods to achieve new state-of-the-art performance on four benchmark datasets. The code is available at: https://github.com/remiMZ/HTS-ECCV22.