论文标题
遗传算法的音频指导专辑封面艺术生成
Audio-guided Album Cover Art Generation with Genetic Algorithms
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Over 60,000 songs are released on Spotify every day, and the competition for the listener's attention is immense. In that regard, the importance of captivating and inviting cover art cannot be underestimated, because it is deeply entangled with a song's character and the artist's identity, and remains one of the most important gateways to lead people to discover music. However, designing cover art is a highly creative, lengthy and sometimes expensive process that can be daunting, especially for non-professional artists. For this reason, we propose a novel deep-learning framework to generate cover art guided by audio features. Inspired by VQGAN-CLIP, our approach is highly flexible because individual components can easily be replaced without the need for any retraining. This paper outlines the architectural details of our models and discusses the optimization challenges that emerge from them. More specifically, we will exploit genetic algorithms to overcome bad local minima and adversarial examples. We find that our framework can generate suitable cover art for most genres, and that the visual features adapt themselves to audio feature changes. Given these results, we believe that our framework paves the road for extensions and more advanced applications in audio-guided visual generation tasks.