论文标题

UAS遥感图像和现场喷雾应用的计算机视觉在玉米田中的志愿棉花检测

Computer Vision for Volunteer Cotton Detection in a Corn Field with UAS Remote Sensing Imagery and Spot Spray Applications

论文作者

Yadav, Pappu Kumar, Thomasson, J. Alex, Searcy, Stephen W., Hardin, Robert G., Braga-Neto, Ulisses, Popescu, Sorin C., Martin, Daniel E., Rodriguez, Roberto, Meza, Karem, Enciso, Juan, Diaz, Jorge Solorzano, Wang, Tianyi

论文摘要

为了控制棉花场中的鲍尔象鼻虫(Anthonomus Grandis L.)害虫重新侵入,目前的志愿棉花棉(VC)(VC)(gossypium hirsutum L.)植物的植物检测在玉米(Zea Mays L.)和Sorghum(Sorghum Bicolor L.)(Sorghum Bicolor L.)的旋转田中的检测中,涉及手工涉及的现场。这导致许多VC植物在田野中间生长仍未被发现,并继续与玉米和高粱并肩生长。当他们到达Pinhead平方阶段(5-6片叶子)时,它们可以用作孔象鼻虫害虫的宿主。因此,需要检测,定位,然后精确地将它们与化学物质进行斑点。在本文中,我们介绍了Yolov5M在放射线和γ校正的低分辨率(1.2兆像素)的多光谱图像中的应用,以检测和定位康沃尔场杂种(VT)生长阶段的VC植物。我们的结果表明,可以以平均平均精度(地图)为79%的平均精度(地图),分类精度为1207 x 923像素的图像,平均推理速度在NVIDIA TESLA TESLA P100 GPU-16GB上的平均推理速度近47帧(FPS),NVIDIA p1 gpu-16gb和0.4 fps and Nvidia jetson jetson jetson jetson tx2 gpu。我们还证明了基于开发的计算机视觉(CV)算法的定制无人飞机系统(UAS)的应用应用程序应用程序,以及如何将其用于近乎实时检测和缓解玉米领域中VC植物的近乎实时检测,以有效地管理孔韦弗尔生物。

To control boll weevil (Anthonomus grandis L.) pest re-infestation in cotton fields, the current practices of volunteer cotton (VC) (Gossypium hirsutum L.) plant detection in fields of rotation crops like corn (Zea mays L.) and sorghum (Sorghum bicolor L.) involve manual field scouting at the edges of fields. This leads to many VC plants growing in the middle of fields remain undetected that continue to grow side by side along with corn and sorghum. When they reach pinhead squaring stage (5-6 leaves), they can serve as hosts for the boll weevil pests. Therefore, it is required to detect, locate and then precisely spot-spray them with chemicals. In this paper, we present the application of YOLOv5m on radiometrically and gamma-corrected low resolution (1.2 Megapixel) multispectral imagery for detecting and locating VC plants growing in the middle of tasseling (VT) growth stage of cornfield. Our results show that VC plants can be detected with a mean average precision (mAP) of 79% and classification accuracy of 78% on images of size 1207 x 923 pixels at an average inference speed of nearly 47 frames per second (FPS) on NVIDIA Tesla P100 GPU-16GB and 0.4 FPS on NVIDIA Jetson TX2 GPU. We also demonstrate the application of a customized unmanned aircraft systems (UAS) for spot-spray applications based on the developed computer vision (CV) algorithm and how it can be used for near real-time detection and mitigation of VC plants growing in corn fields for efficient management of the boll weevil pests.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源