论文标题

用于光学可寻址量子传输设备中静电激子捕获的半导体膜

Semiconductor membranes for electrostatic exciton trapping in optically addressable quantum transport devices

论文作者

Descamps, Thomas, Liu, Feng, Kindel, Sebastian, Otten, René, Hangleiter, Tobias, Zhao, Chao, Lepsa, Mihail Ion, Ritzmann, Julian, Ludwig, Arne, Wieck, Andreas D., Kardynał, Beata E., Bluhm, Hendrik

论文摘要

结合了基于GAAS的异质结构中的栅极定义的量子传输设备的功能和光学处理的自组装量子点的功能,可以为新设备和功能提供广泛的视角。例如,将固定固态量子置与光子量子状态的接口将开放的新途径,以实现每个节点中具有扩展量子处理能力的量子网络。尽管门控设备允许对电子或孔的非常灵活的限制,但没有某种自我组装的激发子的限制要困难得多。为了解决此限制,我们引入了一种技术,通过将异质结构稀释至220 nm厚的膜,通过局部电场实现量子孔中的激子陷阱。我们表明,超过$ 1 \ times 10^{6} $ cm $^{2} $ v $^{ - 1} $ s $ s $^{ - 1} $可以保留,并且可以在此结构上观察到量子点触点和库仑振荡,这意味着稀疏不会兼顾质量。此外,确认了通过量子限制的Stark效应对激子能量的局部降低,从而形成了激子陷阱。这些结果为单个光子源,自旋光子界面和最终在GAAS量子井中的量子网络节点等设备提供了技术基础,这完全是通过自上而下的制造工艺实现的。

Combining the capabilities of gate defined quantum transport devices in GaAs-based heterostructures and of optically addressed self-assembled quantum dots could open broad perspectives for new devices and functionalities. For example, interfacing stationary solid-state qubits with photonic quantum states would open a new pathway towards the realization of a quantum network with extended quantum processing capacity in each node. While gated devices allow very flexible confinement of electrons or holes, the confinement of excitons without some element of self-assembly is much harder. To address this limitation, we introduce a technique to realize exciton traps in quantum wells via local electric fields by thinning a heterostructure down to a 220 nm thick membrane. We show that mobilities over $1 \times 10^{6}$ cm$^{2}$V$^{-1}$s$^{-1}$ can be retained and that quantum point contacts and Coulomb oscillations can be observed on this structure, which implies that the thinning does not compromise the heterostructure quality. Furthermore, the local lowering of the exciton energy via the quantum-confined Stark effect is confirmed, thus forming exciton traps. These results lay the technological foundations for devices like single photon sources, spin photon interfaces and eventually quantum network nodes in GaAs quantum wells, realized entirely with a top-down fabrication process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源