论文标题

稀疏的关系推理与以对象为中心表示

Sparse Relational Reasoning with Object-Centric Representations

论文作者

Spies, Alex F., Russo, Alessandra, Shanahan, Murray

论文摘要

我们在各种诱​​导的稀疏性约束下以相关神经体系结构在以对象为中心(基于插槽的)表示上进行操作时,通过关系神经体系结构学到的软室的合成性。我们发现,增加的稀疏性,尤其是在功能上,可以提高某些模型的性能,并导致更简单的关系。此外,我们观察到,当并非所有对象都完全捕获时,以对象为中心的表示可能是有害的。 CNN不太容易发生的故障模式。这些发现表明了可解释性和绩效之间的权衡,即使对于旨在解决关系任务的模型也是如此。

We investigate the composability of soft-rules learned by relational neural architectures when operating over object-centric (slot-based) representations, under a variety of sparsity-inducing constraints. We find that increasing sparsity, especially on features, improves the performance of some models and leads to simpler relations. Additionally, we observe that object-centric representations can be detrimental when not all objects are fully captured; a failure mode to which CNNs are less prone. These findings demonstrate the trade-offs between interpretability and performance, even for models designed to tackle relational tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源