论文标题

全球存在和奇异性形成,用于耗散的广义君士坦 - 拉克斯 - 马伊达方程:真实线与周期域

Global existence and singularity formation for the generalized Constantin-Lax-Majda equation with dissipation: The real line vs. periodic domains

论文作者

Ambrose, David M., Lushnikov, Pavel M., Siegel, Michael, Silantyev, Denis A.

论文摘要

对于具有耗散$-λ^σ$的广义constantin-lax-majda方程,考虑了全球存在与有限时间奇异性的形成的问题,其中$ \ wideHat {λ^σ} = | k |^σ$,既是circle $ x \ in [-π,π] $ in circle $ x \ in [-π,π] $和真实线路的问题。在周期性的几何形状中,使用两种互补方法来证明$σ\ geq 1 $的全球及时存在解决方案以及当数据较小时的Advection参数$ a $的所有实际值。当$ a = 0 $时,当$ a = 1/2 $时,我们还会在两种几何形状中得出新的分析解决方案,以$σ$的各种值。这些解决方案表现出自相似的有限时间奇异性形成,并且奇异性形成的相似指数和条件也充分表征。由于$ a = 0 $和$σ= 2 $,我们在实际线路上重新审视了一个分析解决方案,然后重新解释了IT相似的有限时间崩溃的条款。实际线上的分析解决方案允许任意小数据的有限时间奇异性形成,即使是$σ$的值大于或等于一个的值,从而说明了实际线路和圆圈上的问题之间存在关键差异。该分析与准确的数值模拟相辅相成,这些模拟能够跟踪复杂平面中的形成和运动奇异性。计算验证并扩展了分析理论。

The question of global existence versus finite-time singularity formation is considered for the generalized Constantin-Lax-Majda equation with dissipation $-Λ^σ$, where $\widehat {Λ^σ}=|k|^σ$, both for the problem on the circle $x \in [-π,π]$ and the real line. In the periodic geometry, two complementary approaches are used to prove global-in-time existence of solutions for $σ\geq 1$ and all real values of an advection parameter $a$ when the data is small. We also derive new analytical solutions in both geometries when $a=0$, and on the real line when $a=1/2$, for various values of $ σ$. These solutions exhibit self-similar finite-time singularity formation, and the similarity exponents and conditions for singularity formation are fully characterized. We revisit an analytical solution on the real line due to Schochet for $a=0$ and $σ=2$, and reinterpret it terms of self-similar finite-time collapse. The analytical solutions on the real line allow finite-time singularity formation for arbitrarily small data, even for values of $σ$ that are greater than or equal to one, thereby illustrating a critical difference between the problems on the real line and the circle. The analysis is complemented by accurate numerical simulations, which are able to track the formation and motion singularities in the complex plane. The computations validate and extend the analytical theory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源