论文标题
高维,稀疏耦合的随机动力学系统中的弱马尔可夫毛毯
Weak Markov Blankets in High-Dimensional, Sparsely-Coupled Random Dynamical Systems
论文作者
论文摘要
本文制定了一个高维随机动力学系统的概念,该系统将每个系统与其他系统进行控制交换的方式,将其融入另一个系统(例如嵌入环境)。使用关于具有多个自由度的系统的行为的绝热定理和渐近论点,我们表明这种受控但并非严格稀疏的耦合结构在高维系统中无处不在。在这样做的过程中,我们证明了K Friston的猜想。
This paper formulates a notion of high-dimensional random dynamical systems that couple to another system, like an embedding environment, in such a way that each system engages in controlled exchange with the other system. Using the adiabatic theorem and asymptotic arguments about the behaviour of systems with many degrees of freedom, we show that this sort of controlled, but not strictly sparse, coupling structure is ubiquitous in high-dimensional systems. In doing so we prove a conjecture of K Friston.