论文标题
超叠量子几何形状的全息特性
Holographic properties of superposed quantum geometries
论文作者
论文摘要
我们以广义张量网络的形式研究了以离散几何数据的叠加为特征的一类量子几何状态的全息特性。该类别包括旋转网络,晶格仪理论的运动学状态和离散的量子重力。我们采用基于量子信息渠道的代数,操作术语定义,这是一种在设置中特别有价值的方法,例如我们考虑的一种,在该设置中,国家相关的Hilbert Space不会将由于计量不变性导致的子系统Hilbert Space。我们应用随机的张量网络技术(在ADS/CFT上下文中成功使用)来分析与量子几何形状叠加相关的批量到边界和边界对边界图的信息传输属性,并产生典型的典型性结果,涉及几何数据上平均值的平均值。在这种情况下,一个自然会获得编码熵计算的主要贡献的非平凡区域操作员。我们的主要结果之一是,要求只能将一个散装区域映射到具有固定总面积的边界上。我们此外,询问边界段之间类似的状态诱导的映射,并讨论等距行为的相关条件。这些概括为量子重力实施的进一步步骤张量的网络全息图。
We study the holographic properties of a class of quantum geometry states characterized by a superposition of discrete geometric data, in the form of generalised tensor networks. This class specifically includes spin networks, the kinematic states of lattice gauge theory and discrete quantum gravity. We employ an algebraic, operatorial definition of holography based on quantum information channels, an approach which is particularly valuable in settings, such as the one we consider, where the relevant Hilbert space of states does not factorize into subsystem Hilbert spaces due to gauge invariance. We apply random tensor network techniques (successfully used in the AdS/CFT context) to analyse information transport properties of the bulk-to-boundary and boundary-to-boundary maps associated with this superposition of quantum geometries, and produce typicality results about the average over the geometric data colouring the fixed graph structure. In this context, one naturally obtains a nontrivial area operator encoding the dominant contribution to entropy calculations. Among our main results is the requirement that one can only isometrically map a bulk region onto boundaries with fixed total area. We furthermore inquire about similar state-induced mappings between segments of the boundary, and discuss related conditions for isometric behaviour. These generalisations make further steps towards quantum gravity implementations of tensor network holography.