论文标题

未经训练的物理信息的神经网络,用于结构化照明显微镜

Untrained, physics-informed neural networks for structured illumination microscopy

论文作者

Burns, Zachary, Liu, Zhaowei

论文摘要

近年来,人们对使用深层神经网络(DNN)进行超分辨率图像重建,包括结构化照明显微镜(SIM)。尽管这些方法显示出非常有希望的结果,但它们都依赖于数据驱动的,有监督的培训策略,这些培训策略需要大量的地面真相图像,这在实验上很难实现。对于SIM成像,存在需要一种灵活,一般和开源的重建方法,该方法可以很容易地适应不同形式的结构化照明。我们证明,我们可以将深层神经网络与结构化照明过程的正向模型相结合,以在没有训练数据的情况下重建子分量图像。可以在一组衍射有限的子图像上优化产生的物理信息神经网络(PINN),因此不需要任何训练集。我们通过模拟和实验数据显示,可以通过简单地更改损失函数中使用的已知照明模式,并可以实现与理论期望非常匹配的分辨率改进,将此Pinn应用于多种SIM方法。

In recent years there has been great interest in using deep neural networks (DNN) for super-resolution image reconstruction including for structured illumination microscopy (SIM). While these methods have shown very promising results, they all rely on data-driven, supervised training strategies that need a large number of ground truth images, which is experimentally difficult to realize. For SIM imaging, there exists a need for a flexible, general, and open-source reconstruction method that can be readily adapted to different forms of structured illumination. We demonstrate that we can combine a deep neural network with the forward model of the structured illumination process to reconstruct sub-diffraction images without training data. The resulting physics-informed neural network (PINN) can be optimized on a single set of diffraction limited sub-images and thus doesn't require any training set. We show with simulated and experimental data that this PINN can be applied to a wide variety of SIM methods by simply changing the known illumination patterns used in the loss function and can achieve resolution improvements that match well with theoretical expectations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源