论文标题
围绕极端质量比的动力扰动,近共振
Dynamical perturbations around an extreme mass ratio inspiral near resonance
论文作者
论文摘要
极高的质量比灵感(EMRIS) - 具有紧凑物体的系统,绕过更大的(例如银河中心)黑洞 - 对银河核环境的新探针都非常感兴趣,并且它们的波形是Kerr Metric的精确测试。这项工作着重于由于EMRI系统周围的第三个机构引起的外部扰动的影响。当内体与外体交叉共振时,这种扰动将最大程度地影响轨道,并导致保守量(能量,角动量和卡特常数)或等效的作用变化,从而导致随后随着时间累积的波形的相移。我们提出了一种一般方法,用于计算共振交叉期间的动作变化,对Kerr时空中的通用轨道有效。我们表明,这些变化与这两个物体发出的重力波形有关(通过与谐振相对应的频率,由weyl starar $ψ_4$的幅度量化,在$ \ indty $中。这使我们能够在不直接计算明确的度量扰动的情况下计算每个机构的动作变量变化,因此我们可以通过调用现有的黑洞扰动理论代码来执行计算。我们表明,我们的计算可以探测静态和动态极限的共振相互作用。我们计划使用这项技术来对EMRIS中的第三体效应及其对LISA波形的潜在影响进行研究。
Extreme mass ratio inspirals (EMRIs) -- systems with a compact object orbiting a much more massive (e.g., galactic center) black hole -- are of interest both as a new probe of the environments of galactic nuclei, and their waveforms are a precision test of the Kerr metric. This work focuses on the effects of an external perturbation due to a third body around an EMRI system. This perturbation will affect the orbit most significantly when the inner body crosses a resonance with the outer body, and result in a change of the conserved quantities (energy, angular momentum, and Carter constant) or equivalently of the actions, which results in a subsequent phase shift of the waveform that builds up over time. We present a general method for calculating the changes in action during a resonance crossing, valid for generic orbits in the Kerr spacetime. We show that these changes are related to the gravitational waveforms emitted by the two bodies (quantified by the amplitudes of the Weyl scalar $ψ_4$ at the horizon and at $\infty$) at the frequency corresponding to the resonance. This allows us to compute changes in the action variables for each body, without directly computing the explicit metric perturbations, and therefore we can carry out the computation by calling an existing black hole perturbation theory code. We show that our calculation can probe resonant interactions in both the static and dynamical limit. We plan to use this technique for future investigations of third-body effects in EMRIs and their potential impact on waveforms for LISA.