论文标题
数字农业中的知识表示:迈向标准化模型的一步
Knowledge Representation in Digital Agriculture: A Step Towards Standardised Model
论文作者
论文摘要
近年来,数据科学已经显着发展。数据分析和采矿过程成为可用数据集的所有部门的常规。已收集,策划,存储和用于提取知识的大量数据存储库。这变得司空见惯。随后,我们直接从数据或通过给定域中的专家提取大量知识。现在的挑战是如何利用以前因高效决策过程而闻名的所有这些知识。直到最近,通过多年的研究获得的许多知识都存储在静态知识库或本体中,而从数据挖掘研究中获得的更多样化和动态知识并没有集中和始终如一地管理。在这项研究中,我们提出了一个称为基于本体的知识图的新型模型,以代表和存储农作物耕作中数据挖掘的结果(知识),以建立,维护和丰富知识发现过程。提出的模型包括六个主要集合:概念,属性,关系,转换,实例和状态。该模型是动态的,可以随时促进知识的访问,更新和开发。本文还提出了一种用于处理此基于知识模型的体系结构。系统架构包括知识建模,提取,评估,发布和剥削。该系统已被实施并用于农业管理和监测。事实证明,它非常有效,并且有望扩展到其他领域。
In recent years, data science has evolved significantly. Data analysis and mining processes become routines in all sectors of the economy where datasets are available. Vast data repositories have been collected, curated, stored, and used for extracting knowledge. And this is becoming commonplace. Subsequently, we extract a large amount of knowledge, either directly from the data or through experts in the given domain. The challenge now is how to exploit all this large amount of knowledge that is previously known for efficient decision-making processes. Until recently, much of the knowledge gained through a number of years of research is stored in static knowledge bases or ontologies, while more diverse and dynamic knowledge acquired from data mining studies is not centrally and consistently managed. In this research, we propose a novel model called ontology-based knowledge map to represent and store the results (knowledge) of data mining in crop farming to build, maintain, and enrich the process of knowledge discovery. The proposed model consists of six main sets: concepts, attributes, relations, transformations, instances, and states. This model is dynamic and facilitates the access, updates, and exploitation of the knowledge at any time. This paper also proposes an architecture for handling this knowledge-based model. The system architecture includes knowledge modelling, extraction, assessment, publishing, and exploitation. This system has been implemented and used in agriculture for crop management and monitoring. It is proven to be very effective and promising for its extension to other domains.