论文标题

在高斯阶乘上及其与环形元素$λ$ -INVARIANTS的连接

On Gauss factorials and their connection to the cyclotomic $λ$-invariants of imaginary quadratic fields

论文作者

Stokes, Christopher

论文摘要

在本文中,我们建立了高斯阶乘与伊瓦泽(Iwasawa)的环形元素$λ$ - invariant之间的联系,用于虚构的二次field $ k $。结果,我们将以$ m = 3 $和$ m = 4 $的1-概率和Dilcher之间的态度解释,以及$λ$ -Invariants for $ k = \ kathbb {q}(q}(q}(\ sqrt {-3})$ and $ k = iS)我们将后者的素数称为``非平凡''。我们还将看到,当$ d = 2,5 $和$ 6 $时,$ k = \ mathbb {q}(\ sqrt {-d})$也是如此。作为推论,我们发现表格$ p^2 = 3x^2 + 3x + 1 $的Primes $ p $始终是非琐事的,对于$ k = \ mathbb {q}(\ sqrt {-3})$。最后,我们表明,$ k = \ mathbb {q}(i)$和$ k = \ mathbb {q}(\ sqrt {-3})$的非平凡素数$ p $分别由Modulo $ p^2 $一致性涉及Euler和Glaisher数字。

In this paper we establish a connection between the Gauss factorials and Iwasawa's cyclotomic $λ$-invariant for an imaginary quadratic field $K$. As a result, we will explain a corespondance between the 1-exceptional primes of Cosgrave and Dilcher for $m = 3$ and $m = 4$, and the primes for which the $λ$-invariants for $K = \mathbb{Q}(\sqrt{-3})$ and $K = \mathbb{Q}(i)$ is greater than one, respectively. We refer to the latter primes as ``non-trivial'' for their respective fields. We will also see that similar correspondences are true for $K = \mathbb{Q}(\sqrt{-d})$ when $d = 2,5$ and $6$. As a corollary we find that primes $p$ of the form $p^2 = 3x^2 + 3x + 1$ are always non-trivial for $K = \mathbb{Q}(\sqrt{-3})$. Last, we show that the non-trivial primes $p$ for $K = \mathbb{Q}(i)$ and $K = \mathbb{Q}(\sqrt{-3})$ are characterized by modulo $p^2$ congruences involving Euler and Glaisher numbers respectively.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源