论文标题

基于神经网络的变异量子蒙特卡洛的原子间力

Interatomic force from neural network based variational quantum Monte Carlo

论文作者

Qian, Yubing, Fu, Weizhong, Ren, Weiluo, Chen, Ji

论文摘要

准确的从头算在物理,化学,生物学和材料科学中至关重要,在过去的几年中,在机器学习计算技术(例如神经网络)的帮助下,它们在过去的几年中见证了快速发展。将神经网络从头开始计算的最近大多数努力都集中在系统的能量上。在这项研究中,我们向前迈出了一步,并通过在变异量子蒙特卡洛(VMC)中实施和测试几种常用的力估计器,以通过神经网络波函数方法来查看使用神经网络波函数方法获得的原子间力。我们的结果表明,神经网络ANSATZ可以改善传统VMC对原子间力的计算。还讨论了力误差与神经网络质量,不同力项的贡献以及每个术语的计算成本之间的关系,以为未来的应用提供指南。我们的工作表明,有望在模拟分子/材料的结构/动力学中应用神经网络波函数方法,并为开发准确的力场提供训练数据。

Accurate ab initio calculations are of fundamental importance in physics, chemistry, biology, and materials science, which have witnessed rapid development in the last couple of years with the help of machine learning computational techniques such as neural networks. Most of the recent efforts applying neural networks to ab initio calculation have been focusing on the energy of the system. In this study, we take a step forward and look at the interatomic force obtained with neural network wavefunction methods by implementing and testing several commonly used force estimators in variational quantum Monte Carlo (VMC). Our results show that neural network ansatz can improve the calculation of interatomic force upon traditional VMC. The relation between the force error and the quality of neural network, the contribution of different force terms, and the computational cost of each term are also discussed to provide guidelines for future applications. Our work demonstrates that it is promising to apply neural network wavefunction methods in simulating structures/dynamics of molecules/materials and provide training data for developing accurate force fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源