论文标题
噪音相互作用系统的尺寸降低
Dimension reduction of noisy interacting systems
论文作者
论文摘要
我们考虑了一类模型,描述了受乘法噪声的相同相互作用剂的集合。在热力学极限中,这些系统通常在非平衡设置中表现出连续和不连续的相变。我们提供了一种系统的减小方法,用于基于无限系统的概率分布的累积量来构建低维,减小的动力学。我们表明,低维动力学返回正确的诊断属性,因为它会产生系统的固定相图的定量准确表示,我们将其与精确的分析结果和数值模拟进行比较。此外,我们证明降低的订单动力学也产生了预后,即时间依赖性属性,因为它提供了系统对外部扰动的正确响应。一方面,这验证了我们的复杂性降低方法的使用,因为它不仅保留了系统的不变度度量的信息,还保留了随机动力学的过渡概率和时间依赖性相关属性的信息。另一方面,线性响应属性的分解是相变发生的键签名。我们表明,减少的响应操作员通过定量评估系统易感性的奇异性质以及对频率的真实值来捕获正确的分化共振行为。因此,该方法可以解释为在不知道的订单参数的设置中,在高维相互作用系统中研究和检测临界现象的研究和检测的较低阶数方法。
We consider a class of models describing an ensemble of identical interacting agents subject to multiplicative noise. In the thermodynamic limit, these systems exhibit continuous and discontinuous phase transitions in a, generally, nonequilibrium setting. We provide a systematic dimension reduction methodology for constructing low dimensional, reduced-order dynamics based on the cumulants of the probability distribution of the infinite system. We show that the low dimensional dynamics returns the correct diagnostic properties since it produces a quantitatively accurate representation of the stationary phase diagram of the system that we compare with exact analytical results and numerical simulations. Moreover, we prove that the reduced order dynamics yields also the prognostic, i.e., time dependent properties, as it provides the correct response of the system to external perturbations. On the one hand, this validates the use of our complexity reduction methodology since it retains information not only of the invariant measure of the system but also of the transition probabilities and time dependent correlation properties of the stochastic dynamics. On the other hand, the breakdown of linear response properties is a key signature of the occurrence of a phase transition. We show that the reduced response operators capture the correct diverging resonant behaviour by quantitatively assessing the singular nature of the susceptibility of the system and the appearance of a pole for real value of frequencies. Hence, this methodology can be interpreted as a low dimensional, reduced order approach to the investigation and detection of critical phenomena in high dimensional interacting systems in settings where order parameters are not known.