论文标题
可解释的视觉变压器启用植物性疾病识别的卷积神经网络:PlantXvit
Explainable vision transformer enabled convolutional neural network for plant disease identification: PlantXViT
论文作者
论文摘要
植物疾病是全球作物损失的主要原因,对世界经济产生了影响。为了解决这些问题,智能农业解决方案正在发展,将物联网和机器学习结合起来,以进行早期疾病检测和控制。许多这样的系统使用基于视觉的机器学习方法进行实时疾病检测和诊断。随着深度学习技术的发展,已经出现了新方法,这些方法采用卷积神经网络进行植物性疾病检测和鉴定。基于视觉的深度学习的另一个趋势是使用视觉变形金刚,事实证明这是分类和其他问题的强大模型。但是,很少研究视力变压器以进行植物病理学应用。在这项研究中,提出了一种启用视觉变压器的卷积神经网络模型,称为植物性疾病鉴定。提出的模型将传统卷积神经网络的能力与视觉变压器的能力相结合,以有效地识别出多种农作物的大量植物疾病。拟议的模型具有轻巧的结构,只有80万个可训练的参数,这使其适用于基于物联网的智能农业服务。 PlantXvit的性能在五个公开可用的数据集上进行了评估。拟议的PlantXvit网络在所有五个数据集上的五种最先进方法的表现要好。即使在挑战性的背景条件下,识别植物疾病的平均准确性分别超过了苹果,玉米和稻米数据集的93.55%,92.59%和98.33%。使用梯度加权的类激活图和局部可解释的模型不可思议的解释来评估所提出模型的解释性效率。
Plant diseases are the primary cause of crop losses globally, with an impact on the world economy. To deal with these issues, smart agriculture solutions are evolving that combine the Internet of Things and machine learning for early disease detection and control. Many such systems use vision-based machine learning methods for real-time disease detection and diagnosis. With the advancement in deep learning techniques, new methods have emerged that employ convolutional neural networks for plant disease detection and identification. Another trend in vision-based deep learning is the use of vision transformers, which have proved to be powerful models for classification and other problems. However, vision transformers have rarely been investigated for plant pathology applications. In this study, a Vision Transformer enabled Convolutional Neural Network model called "PlantXViT" is proposed for plant disease identification. The proposed model combines the capabilities of traditional convolutional neural networks with the Vision Transformers to efficiently identify a large number of plant diseases for several crops. The proposed model has a lightweight structure with only 0.8 million trainable parameters, which makes it suitable for IoT-based smart agriculture services. The performance of PlantXViT is evaluated on five publicly available datasets. The proposed PlantXViT network performs better than five state-of-the-art methods on all five datasets. The average accuracy for recognising plant diseases is shown to exceed 93.55%, 92.59%, and 98.33% on Apple, Maize, and Rice datasets, respectively, even under challenging background conditions. The efficiency in terms of explainability of the proposed model is evaluated using gradient-weighted class activation maps and Local Interpretable Model Agnostic Explanation.