论文标题

紧凑型组具有高通勤概率的一组亚组

Compact groups with high commuting probability of monothetic subgroups

论文作者

Azevedo, João, Shumyatsky, Pavel

论文摘要

如果$ h $是紧凑型组$ g $的子组,则$ h $ comport的随机元素的随机元素的随机元素为$ g $的概率由$ pr(h,g)$表示。令$ \ langle g \ rangle $代表元素$ g \ in g $中生成的一组子组,让$ k $是$ g $的子组。我们证明$ pr(\ langle x \ rangle,g)> 0 $ in K $中的任何$ x \ in k $ in k $ in k $,并且仅当$ g $具有开放的正常子组$ t $,因此$ k/c_k(t)$是扭转。尤其是,$ pr(\ langle x \ rangle,g)> 0 $ in G $中的任何$ x \ in G $ in G $,并且仅当$ g $实际上是按中心的,也就是说,有一个开放的正常亚组$ t $,使得$ g/z(t)$是Torsion。我们还推断出该结果的许多推论。

If $H$ is a subgroup of a compact group $G$, the probability that a random element of $H$ commutes with a random element of $G$ is denoted by $Pr(H,G)$. Let $\langle g\rangle$ stand for the monothetic subgroup generated by an element $g\in G$ and let $K$ be a subgroup of $G$. We prove that $Pr(\langle x\rangle,G)>0$ for any $x\in K$ if and only if $G$ has an open normal subgroup $T$ such that $K/C_K(T)$ is torsion. In particular, $Pr(\langle x\rangle,G)>0$ for any $x\in G$ if and only if $G$ is virtually central-by-torsion, that is, there is an open normal subgroup $T$ such that $G/Z(T)$ is torsion. We also deduce a number of corollaries of this result.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源