论文标题

使用生成对抗网络的单个MR图像超分辨率

Single MR Image Super-Resolution using Generative Adversarial Network

论文作者

Rashid, Shawkh Ibne, Shakibapour, Elham, Ebrahimi, Mehran

论文摘要

可以使用超分辨率方法改善医学图像的空间分辨率。实际增强的超级分辨率生成对抗网络(Real-Esrgan)是最近用于产生较高分辨率图像的最新有效方法之一,给定较低分辨率的输入图像。在本文中,我们应用这种方法来增强2D MR图像的空间分辨率。在我们提出的方法中,我们稍微修改了从脑肿瘤分割挑战(BRATS)2018数据集中训练2D磁共振图像(MRI)的结构。通过计算SSIM(结构相似性指数度量),NRMSE(归一化根平方误),MAE(MAE(平均绝对误差))和VIF(视觉信息保真度)值来对获得的结果进行定性和定量验证。

Spatial resolution of medical images can be improved using super-resolution methods. Real Enhanced Super Resolution Generative Adversarial Network (Real-ESRGAN) is one of the recent effective approaches utilized to produce higher resolution images, given input images of lower resolution. In this paper, we apply this method to enhance the spatial resolution of 2D MR images. In our proposed approach, we slightly modify the structure of the Real-ESRGAN to train 2D Magnetic Resonance images (MRI) taken from the Brain Tumor Segmentation Challenge (BraTS) 2018 dataset. The obtained results are validated qualitatively and quantitatively by computing SSIM (Structural Similarity Index Measure), NRMSE (Normalized Root Mean Square Error), MAE (Mean Absolute Error), and VIF (Visual Information Fidelity) values.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源