论文标题
匿名动态网络中的最佳计算
Optimal Computation in Anonymous Dynamic Networks
论文作者
论文摘要
我们简单地表征了可以通过动态网络中的匿名过程确定计算的功能,具体取决于网络中的领导者数量。此外,我们还提供有效的分布式算法来计算所有此类功能,假设对网络的了解最少或不了解。我们的每种算法都有两个版本:一个以正确的输出终止的版本和一个更快的输出,可以在不明确终止的情况下稳定在正确的输出上。值得注意的是,这些是第一个确定性算法,其运行时间与我们称为“动态脱节性”的过程数量和网络的参数线性缩放(这意味着我们的动态网络不一定必须始终连接)。我们还提供匹配的下限,这表明我们所有算法对于任何固定数量的领导者均无最佳。 尽管有关匿名动态网络的大多数现有文献都依赖于经典的质量分布技术,但我们的工作利用了一种新颖的组合结构,称为“历史树”,这是独立的兴趣。除其他贡献外,我们的结果在两个流行的匿名动态网络的基本问题上取得了决定性的进展:无领先的平均共识(即计算流程中分布的输入数的平均值)和多领导者计数(即确定网络中的确切过程数量)。 我们的贡献不仅为历史树的应用开辟了一系列有希望的研究,而且还表明,匿名动态网络中的计算实际上是可行的,而且要求的要求远低于以前的猜想。
We give a simple characterization of the functions that can be computed deterministically by anonymous processes in dynamic networks, depending on the number of leaders in the network. In addition, we provide efficient distributed algorithms for computing all such functions assuming minimal or no knowledge about the network. Each of our algorithms comes in two versions: one that terminates with the correct output and a faster one that stabilizes on the correct output without explicit termination. Notably, these are the first deterministic algorithms whose running times scale linearly with both the number of processes and a parameter of the network which we call "dynamic disconnectivity" (meaning that our dynamic networks do not necessarily have to be connected at all times). We also provide matching lower bounds, showing that all our algorithms are asymptotically optimal for any fixed number of leaders. While most of the existing literature on anonymous dynamic networks relies on classic mass-distribution techniques, our work makes use of a novel combinatorial structure called "history tree", which is of independent interest. Among other contributions, our results make conclusive progress on two popular fundamental problems for anonymous dynamic networks: leaderless Average Consensus (i.e., computing the mean value of input numbers distributed among the processes) and multi-leader Counting (i.e., determining the exact number of processes in the network). Our contribution not only opens a promising line of research on applications of history trees, but also demonstrates that computation in anonymous dynamic networks is practically feasible and far less demanding than previously conjectured.