论文标题
盲图质量评估的无源无监督域的适应
Source-free Unsupervised Domain Adaptation for Blind Image Quality Assessment
论文作者
论文摘要
现有的基于学习的盲图质量评估方法(BIQA)在很大程度上取决于大量带注释的培训数据,并且在遇到域/分配转移问题时通常会遭受严重的性能降解。由于开发了无监督的域适应性(UDA),某些工作试图将知识从具有标签充足的源域转移到使用UDA域移动下的无标签目标域。但是,它需要源和目标数据共存,由于隐私或存储问题,这对于源数据可能是不切实际的。在本文中,我们以简单但有效的方式迈向无源无监督的域适应(SFUDA),以使Biqa无需访问源数据即可解决域移动。具体来说,我们将质量评估任务作为评级分配预测问题。基于BIQA的内在特性,我们提出了一组精心设计的自我监管的目标,以指导BN仿射参数对目标域的适应。其中,最大程度地减少了预测熵并最大化批处理预测多样性的目的是鼓励更自信的结果,同时避免琐碎的解决方案。此外,基于观察到,单图的iQA评级分布遵循高斯分布,我们将高斯正则化应用于预测的评级分布,以使其与人类评分的性质更加一致。在跨域情景下的广泛实验结果证明了我们提出的减轻域移位方法的有效性。
Existing learning-based methods for blind image quality assessment (BIQA) are heavily dependent on large amounts of annotated training data, and usually suffer from a severe performance degradation when encountering the domain/distribution shift problem. Thanks to the development of unsupervised domain adaptation (UDA), some works attempt to transfer the knowledge from a label-sufficient source domain to a label-free target domain under domain shift with UDA. However, it requires the coexistence of source and target data, which might be impractical for source data due to the privacy or storage issues. In this paper, we take the first step towards the source-free unsupervised domain adaptation (SFUDA) in a simple yet efficient manner for BIQA to tackle the domain shift without access to the source data. Specifically, we cast the quality assessment task as a rating distribution prediction problem. Based on the intrinsic properties of BIQA, we present a group of well-designed self-supervised objectives to guide the adaptation of the BN affine parameters towards the target domain. Among them, minimizing the prediction entropy and maximizing the batch prediction diversity aim to encourage more confident results while avoiding the trivial solution. Besides, based on the observation that the IQA rating distribution of single image follows the Gaussian distribution, we apply Gaussian regularization to the predicted rating distribution to make it more consistent with the nature of human scoring. Extensive experimental results under cross-domain scenarios demonstrated the effectiveness of our proposed method to mitigate the domain shift.