论文标题

FAASLIGHT:一般应用程序级别的冷启动延迟优化,用于无服务器计算中的功能-A服务

FaaSLight: General Application-Level Cold-Start Latency Optimization for Function-as-a-Service in Serverless Computing

论文作者

Liu, Xuanzhe, Wen, Jinfeng, Chen, Zhenpeng, Li, Ding, Chen, Junkai, Liu, Yi, Wang, Haoyu, Jin, Xin

论文摘要

无服务器计算是一种流行的云计算范式,可以从服务器管理中释放开发人员。功能-AS-A-Service(FAAS)是无服务器计算的最流行的实现,代表应用程序为事件驱动和无状态功能。但是,现有研究报告说,FAAS应用的功能严重遭受了冷启动的延迟。在本文中,我们提出了一种方法,即通过应用程序级优化加速FAAS应用程序的冷启动。我们首先进行了一项测量研究,以研究FAAS冷启动问题的可能根本原因。结果表明,应用程序代码加载延迟是一个重要的开销。因此,仅加载来自FAAS应用程序的必不可少的代码可以是一个足够的解决方案。基于此洞察力,我们通过构造功能级调用图和与FAAS应用程序分开的其他代码(即可选代码)来识别与应用程序功能相关的代码。可以根据需要加载分离的可选代码,以避免对不可或缺的代码的不准确识别,从而导致应用程序故障。特别是,指导Faaslight的设计的关键原则本质上是一般的,即平台和语言敏捷。现实世界中FAAS应用程序的评估结果表明,FAASLIGHT可以大大减少代码加载延迟(最高78.95%,平均为28.78%),从而降低了冷延迟延迟。结果,功能的总响应潜伏期可以降低高达42.05%(平均为19.21%)。与最先进的情况相比,FAASLIGHT在减少平均总响应潜伏期方面取得了21.25倍的提高。

Serverless computing is a popular cloud computing paradigm that frees developers from server management. Function-as-a-Service (FaaS) is the most popular implementation of serverless computing, representing applications as event-driven and stateless functions. However, existing studies report that functions of FaaS applications severely suffer from cold-start latency. In this paper, we propose an approach namely FaaSLight to accelerating the cold start for FaaS applications through application-level optimization. We first conduct a measurement study to investigate the possible root cause of the cold start problem of FaaS. The result shows that application code loading latency is a significant overhead. Therefore, loading only indispensable code from FaaS applications can be an adequate solution. Based on this insight, we identify code related to application functionalities by constructing the function-level call graph, and separate other code (i.e., optional code) from FaaS applications. The separated optional code can be loaded on demand to avoid the inaccurate identification of indispensable code causing application failure. In particular, a key principle guiding the design of FaaSLight is inherently general, i.e., platform- and language-agnostic. The evaluation results on real-world FaaS applications show that FaaSLight can significantly reduce the code loading latency (up to 78.95%, 28.78% on average), thereby reducing the cold-start latency. As a result, the total response latency of functions can be decreased by up to 42.05% (19.21% on average). Compared with the state-of-the-art, FaaSLight achieves a 21.25X improvement in reducing the average total response latency.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源