论文标题
光度IGM断层扫描:有效地绘制与深窄带成像的类星体光回声
Photometric IGM Tomography: Efficiently Mapping Quasar Light Echoes with Deep Narrow Band Imaging
论文作者
论文摘要
在标准图片中,发光类星体活性的发作与超大质量黑洞(SMBH)生长直接相关。在类星体的寿命上排放的电离辐射改变了周围的播层间介质(IGM)的电离状态,从而增强了LY $α$森林传播 - 所谓的接近效应 - 可以在背景源吸收光谱中观察到。由于光的有限速度,接近效应的横向方向对类星体的辐射历史敏感,从而导致“光相呼应”,它编码了Myr-Timescales上SMBH的生长历史。在本文中,我们介绍了一种新技术,以光度学的光度图绘制了使用$α$ Forest层析成像的ly $α$森林层析成像,并使用精心选择的窄带过滤器。前景窄带滤波器用于测量沿背景星系的$α$森林变速器,该滤镜由背景窄带滤波器选为LY $α$发射器。这种新型的双狭窄频段断层扫描技术利用了较高的吞吐量和更广泛的成像视野,而不是光谱范围,以有效地重建了围绕类星体周围的$α$ sorest传播的二维图。我们提出了一个完全的贝叶斯框架,以测量从光度IGM断层扫描中的SMBH的发光类星体寿命,并检查观察性要求。这项新技术提供了一种有效的策略,可以用适度的观察时间来绘制大面积的天空,并通过进一步的深3D随访光谱LY $α$ forest层析成像来检查有趣的区域。
In the standard picture, episodes of luminous quasar activity are directly related to supermassive black hole (SMBH) growth. The ionising radiation emitted over a quasar's lifetime alters the ionisation state of the surrounding intergalactic medium (IGM), enhancing the Ly$α$ forest transmission -- so-called proximity effect -- which can be observed in absorption spectra of background sources. Owing to the finite speed of light, the transverse direction of the proximity effect is sensitive to the quasar's radiative history, resulting in `light echoes' that encode the growth history of the SMBH on Myr-timescales. In this paper, we introduce a new technique to photometrically map this quasar light echoes using Ly$α$ forest tomography by using a carefully selected pair of narrow-band filters. A foreground narrow-band filter is used to measure Ly$α$ forest transmission along background galaxies selected as Ly$α$ emitters by a background narrow-band filter. This novel double narrow-band tomographic technique utilises the higher throughput and wider field of view of imaging over spectroscopy to efficiently reconstruct a two-dimensional map of Ly$α$ forest transmission around a quasar. We present a fully Bayesian framework to measure the luminous quasar lifetime of a SMBH from photometric IGM tomography, and examine the observational requirements. This new technique provides an efficient strategy to map a large area of the sky with a modest observing time and to identify interesting regions to be examined by further deep 3D follow-up spectroscopic Ly$α$ forest tomography.