论文标题
高阶条件互信息最大化,以处理特征选择中的高阶依赖性
High-Order Conditional Mutual Information Maximization for dealing with High-Order Dependencies in Feature Selection
论文作者
论文摘要
本文提出了一种基于条件互信息(CMI)的新型特征选择方法。提出的高阶条件互信息最大化(HOCMIM)将高阶依赖性纳入特征选择过程中,并且由于其自下而上的推导而具有直接的解释。 HOCMIM源自CMI的链膨胀,并表示为最大化优化问题。最大化问题是使用贪婪的搜索过程解决的,该过程加快了整个功能选择过程。实验是在一组基准数据集上运行的(总计20个)。将HOCMIM与两个有监督的学习分类器(支持向量机和K-Nearest邻居)的结果进行比较。 HOCMIM在准确性方面取得了最佳效果,并且表明要比高级特征选择的速度快。
This paper presents a novel feature selection method based on the conditional mutual information (CMI). The proposed High Order Conditional Mutual Information Maximization (HOCMIM) incorporates high order dependencies into the feature selection procedure and has a straightforward interpretation due to its bottom-up derivation. The HOCMIM is derived from the CMI's chain expansion and expressed as a maximization optimization problem. The maximization problem is solved using a greedy search procedure, which speeds up the entire feature selection process. The experiments are run on a set of benchmark datasets (20 in total). The HOCMIM is compared with eighteen state-of-the-art feature selection algorithms, from the results of two supervised learning classifiers (Support Vector Machine and K-Nearest Neighbor). The HOCMIM achieves the best results in terms of accuracy and shows to be faster than high order feature selection counterparts.